The

Complete
Reference

138

C++: The Complete Reference

activity occurs. This chapter examines their C-like features, including passing

arguments, returning values, prototypes, and recursion. Part Two discusses
the C++-specific features of functions, such as function overloading and reference
parameters.

F unctions are the building blocks of C and C++ and the place where all program

The General Form of a Function'

The general form of a function is

ret-type function-name(paraimeter list)
{

body of the function
|

The ret-type specifies the type of data that the function returns. A function may return
any type of data except an array. The parameter list is a comma-separated list of variable
names and their associated types that receive the values of the arguments when the
function is called. A function may be without parameters. in which case the parameter
listis empty. However, even if there are no parameters, the parentheses are still required.

In variable declarations, you can declare many variables to be of a common type
by using a comma-separated list of variable names. In contrast, all function parameters
must be declared individually, each including both the type and name. That is, the
parameter declaration list for a function takes this general form:

f(type varnamel, type varname2, . . ., type varnameN)

For example, here are correct and incorrect function parameter declarations:

f(int i, int k, int j) /* correct */
f(int i, k, float 3) /* i1ncorrect *

Scope Rules of Functions

The scope rules of a language are the rules that govern whether a piece of code knows
about or has access to another piece of code or data.

Each function is a discrete block of code. A function's code is private to that function
and cannot be accessed by any statement in any other function except through a call to
that function. (For instance, you cannot use goto to jump into the middle of another
function.) The code that constitutes the body of a function is hidden from the rest of the
program and, unless it uses global variables or data, it can neither affect nor be affected

Chapter 6: Functions

by other parts of the program. Stated another way, the code and data that are defined
within one function cannot interact with the code or data defined in another function
because the two functions have a different scope.

Variables that are defined within a function are called local variables. A local
variable comes into existence when the function is entered and is destroyed upon
exit. That is, local variables cannot hold their value between function calls. The only
exception to this rule is when the variable is declared with the static storage class
specifier. This causes the compiler to treat the variable as if it were a global variable
for storage purposes, but limits its scope to within the function. (Chapter 2 covers
global and local variables in depth.)

In C (and C++) you cannot define a function within a function. This is why neither
C nor C++ are technically block-structured languages.

Function Arguments

If a function is to use arguments, it must declare variables that accept the values

of the arguments. These variables are called the formal parameters of the function.
They behave like other local variables inside the function and are created upon entry
into the function and destroyed upon exit. As shown in the following function, the
parameter declarations occur after the function name:

/* Return 1 1if ¢ is part of string s; 0 otherwise. */
int is_in{(char *s, char c¢)
{
while(*s)
if(*s==c) return 1i;
else s++;

return 0;

The function is_in() has two parameters: s and ¢. This function returns 1 if the
character c is part of the string s; otherwise, it returns 0.

As with local variables, you may make assignments to a function’s formal parameters
or use them in an expression. Even though these variables perform the special task of
receiving the value of the arguments passed to the function, you can use them as you
do any other local variable.

Call by Value, Call by Reference

In a computer language, there are two ways that arguments can be passed to a
subroutine. The first is known as call by vaiue. This method copies the value of an

139

240 C++: The Complete Reference

argument into the formal parameter of the subroutine. In this case, changes made to
the parameter have no effect on the argument.

Call by reference is the second way of passing arguments to a subroutine. In this
method, the address of an argument is copied into the parameter. Inside the subroutine,
the address is used to access the actual argument used in the call. This means that
changes made to the parameter affect the argument.

By default, C/C++ uses call by value to pass arguments. In general, this means that
code within a function cannot alter the arguments used to call the function. Consider
the following program:

#include <stdio.h>

int sgr(int x);

int main(void)

{
int t=10;

printf("%d %d", sgr(t), t);

return 0;

int sqgr{int x)
{
X = X*X;
return(x);

In this example, the value of the argument to sqr(), 10, is copied into the parameter

x. When the assignment x = x*x takes place, only the local variable x is modified. The

variable t, used to call sqr(), still has the value 10. Hence, the output is 100 10.
Remember that it is a copy of the value of the argument that is passed into the function.

What occurs inside the function has no effect on the variable used in the call.

Creating a Call by Reference

Even though C/C++ uses call by value for passing parameters, you can create a
call by reference by passing a pointer to an argument, instead of the argument itself.
Since the address of the argument is passed to the function, code within the function
can change the value of the argument outside the function.

Pointers are passed to functions just like any other value. Of course, you need
to declare the parameters as pointer types. For example, the function swap(),

Chapter 6: Functions

which exchanges the values of the two integer variables pointed to by its arguments,
shows how.

void swap (int *x, int *y)

{
int temp;
temp = *x; /* save the value at address x */
*K o= *y; /* put y into x */

y = temp; / put x into y */

swap() is able to exchange the values of the two variables pointed to by xand y because
their addresses (not their values) are passed. Thus, within the function, the contents of
the variables can be accessed using standard pointer operations, and the contents of the

variables used to call the function are swapped.
Remember that swap() (or any other function that uses pointer parameters) must
be called with the addresses of the arquments. The following fragment shows the correct

way to call swap():

void swap(int *x, int *y);

int main(void)

{
int 1, 3;
i =10;
j = 20;
printf{"%d %d", i, Jj);
swap(&i, &j); /* pass the addresses of i and - */

printf("%d sd", i, j);
return 0;

)

In this example, the variable i is assigned the value 10 and j is assigned the value 20.
Then swap() is called with the addresses of i and j. (The unary operator & is used to
produce the address of the variables.) Therefore, the addresses of i and j, not their values,
are passed into the function swap(). After swap() returns, the values of i and j will be

exchanged.

C++ allows you to fully automate a call by reference through the use of reference
Note you o Juty @ N 3 e
parameters. This feature is described in Part Tewo.

141

142

C++: The Complete Reference

Calling Functions with Arrays

Arrays are covered in detail in Chapter 4. However, this section discusses passing
arrays as arguments to functions because it is an exception to the normal call-by-value
parameter passing.

When an array is used as a function argument, its address is passed to a function.
This is an exception to the call-by-value parameter passing convention. In this case, the
code inside the function is operating on, and potentially altering, the actual contents of
the array used to call the runction. For example, consider the function print_upper(),
which prints its string argument in uppercase:

#include <stdio.h>
#include <ctype.h>

void print_upper (char *string);

int main(void)
{

char s[80];

gets(s});

print_upper (s} ;

printf ("\ns is now uppercase: %s", s);
return 0;

/* Print a string in uppercase. */
void print_upper (char *string)
{

register int t;

for (t=0; stringlt]; ++t) {
string{t] = toupper(string(t]);
putchar (string[t]);

After the call to print_upper(), the contents of array s in main() have also been changed
to uppercase. If this is not what you want, you could write the program like this:

#include <stdio.h>
#include <ctype.h>

Chapter 6: Functions

void print_upper (char *string);

int main(void)

{
char s[80];

gets(s);
print_upper (s);
printf{"\ns is unchanged:

return 0;
void print_upper (char *string)
{

register int t;

for (t=0; stringlt]; ++t)
putchar (toupper (string[t]));

In this version, the contents of array s remain unchanged because its values are not
altered inside print_apper().

The standard library function gets() is a classic example of passing arrays into
functions. Although the gets() in your standard library is more sophisticated, the
following simpler version, called xgets(), will give you an idea of how it works.

/* A simple version of the standard
gets() library function. */

char *xgets(char *s)

{
char ch, *p;
int t;

p = s; /* gets() returns a pointer to s */

for(t=0; t<80; ++t){
ch = getchar();

switch(ch) {

143

C++: The Complete Reference

case '\n':
s[t] = "\0'; /* terminate the string */
return p;
case '\b':
if(t>0) t--;
break;
default:
s[t] = ch;

}
s[79] = '\0';
return p;

The xgets() function must be called with a character pointer. This, of course, can
be the name of a character array, which by definition is a character pointer. Upon entry,
xgets() establishes a for loop from 0 to 79. This prevents larger strings from being
entered at the keyboard. If more than 80 characters are entered, the tunction returns.
(The real gets() function does not have this restriction.) Because C/C++ has no built-in
bounds checking, you should make sure that any array used to call xgets() can accept
at least 80 characters. As you type characters on the keyboard, they are placed in the string.
If you type a backspace, the counter t is reduced by 1, effectively removing the previous
character from the array. When you press ENTER, a null is placed at the end of the string,
signaling its termination. Because the actual array used to call xgets() is modified, upon
return it contains the characters that you type.

argc and argv—Arguments to main()

Sometimes it is useful to pass information into a program when you run it. Generally, you
pass information into the main() function via command line arguments. A command
line argument is the information that follows the program's name on the command line
of the operating system. For example, when you compile a program, you might type
something like the following after the command prompt:

CC program_name

where program_name is a command line argument that specifies the name of the
program you wish to compile.

There are two special built-in arguments, argv and argc, that are used to receive
command line arguments. The argc parameter holds the number of arguments on
the command line and is an integer. [t is always at least 1 because the name of the
program qualifies as the first argument. The argv parameter is a pointer to an array

Chapter 6: Functions

of character pointers. Each element in this array points to a command line argument.
All command line arguments are strings—any numbers will have to be converted by
the program into the proper internal format. For example, this simple program prints
Hello and your name on the screen if you type it directly after the program name.

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argvl[])
{
if(arge!l=2) {
printf("You forgot to type your name.\n");
exit(l);
}

printf ("Hello %s", argvil]):

return 0;

If you called this program name and your name were Tom, you would type name Tom
to run the program. The output from the program would be Hello Tom.

In many environments, each command line argument must be separated by a space
or a tab. Commas, semicolons, and the like are not considered separators. For example,

I run Spot, run

is made up of three strings, while
l Herb, Rick, Fred

is a single string since commas are not generally legal separators.

Some environments allow you to enclose within double quotes a string containing
spaces. This causes the entire string to be treated as a single argument. Check your
operating system documentation for details on the definition of command line parameters
for your system.

You must declare argv properly. The most common method is

I char *argvl[];

The empty brackets indicate that the array is of undetermined length. You can now
access the individual arguments by indexing argv. For example, argv[0] points to the

146

C++: The Complete Reference

first string, wruch is always the program’s name; argv[1] points to the first argument,
and so on.

Another short example using command line arguments is the program called
countdown, shown here. It counts down from a starting value (which is specified
on the command line) and beeps when it reaches 0. Notice that the first argument
containing the number is converted into an integer by the standard function atoi().If
the string "display” is the second command line argument, the countdown will also be
displayed on the screen.

/* Countdown program. */
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>

int main(int argc, char *argv([])

{

int disp, count;

if(argce<2) {
printf ("You must enter the length of the count\n");
printf("on the command line. Try again.\n");
exit (1) ;

if (argc==3 && !strcmp(argv(2], "display")) disp = 1;
else disp = 0;

for (count=atoi(argv([1l]); count; --count)
if (disp) printf("$d\n", count);

putchar('\a'); /* this will ring the bell */

printf ("Done") ;

return 0;

Notice that if no command line arguments have been specified, an error message is
printed. A program with command line arguments often issues instructions if the
user attempts to run the program without entering the proper information.

To access an individual character in one of the command line arguments, add a
second index to argv. For example, the next program displays all of the arguments
with which it was called, one character at a time:

Chapter 6: Functions

#include <stdio.h>

int main{int argc, char *argvi]:
{

int t, 1i;

for (t=0; t<argc; ++t) {

+ - i

while(aragv[t]{il) {
1

i1

putchar (argvi

++1

i

return 0;

Remember, the first index accesses the string, and the second index accesses the
individual characters of the string.

Normally, you use argc and argyv to get initial commands into your program. In
theory, you can have up to 32,767 arguments, but most operating systems do not allow
more than a few. You typically use these arguments to indicate a filename or an option.
Using command line arguments gives your program a professional appearance and
facilitates its use in batch files.

When a program does not require command line parameters, it is common
practice to explicitly declare main() as having no parameters. For C programs this is
accomplished by using the void keyword in its parameter list. (This is the approach
used by the programs in Part One of this book.) However, for C++ programs you may
simply specify an empty parameter list. In C++, the use of void to indicate an empty
parameter list is allowed, but redundant.

The names argc and argv are traditional but arbitrary. You may name these two
parameters to main() anything you like. Also, some compilers may support additional
arguments to main(), so be sure to check your user’s manual.

The return Statement

The return statement itself is described in Chapter 3. As explained, it has two important
uses. First, it causes an immediate exit from the function that it is in. That is, it causes
program execution to return to the calling code. Second, it may be used to return a value.
This section examines how the return statement is used.

147

148

C++: The Complete Reference

Returning from a Function

There are two ways that a function terminates execution and returns to the caller. The
first occurs when the last statement in the function has executed and, conceptually,
the function’s ending curly brace (}) is encountered. (Of course, the curly brace isn't
actually present in the object code, but you can think of it in this way.) For example, the
pr_reverse() function in this program simply prints the string "I like C++" backwards
on the screen and then returns.

#include <string.h>
#include <stdio.h>

void pr_reverse(char *s);

int main(void)
{

pr_reverse ("I like C++");

return 0;

void pr_reverse(char =*s)

{
register int t;

for(t=strlen(s)-1; t>=0; t--) putchar(s[t]l);

Once the string has been displayed, there is nothing left for pr_reverse() to do, so it
returns to the place from which it was called.

Actually, not many functions use this default method of terminating their execution.
Most functions rely on the return statement to stop execution either because a value
must be returned or to make a function's code simpler and more efficient.

A function may contain several return statements. For example, the find_substr()
function in the following program returns the starting position of a substring within
a string, or returns —1 if no match is found.

#include <stdio.h>
int find_substr(char *sl, char *s2):;

int main(void)

{

Chapter 6: Functions

if (find_substr("C++ is fun", "is") != -1)
printf ("substring is found") ;

return 0;

/* Return index of first match of s2 in sl. */
int find_substr (char *sl, char *s2)
{

register int t;

char *p, *p2;

for (t=0; sl[t]; t++) {
p = &sllit];
p2 = s2;

while (*p2 && *p2==*p) {
P+
pP2++;
}
if (! *p2) return t; /* lst return */

)

return -1; /* 2nd return */

Returning Values

All functions, except those of type void, return a value. This value is specified by the
return statement. In C89, if a non-void function does not explicitly return a value via
a return statement, then a garbage value is returned. In C++ (and C99), a non-void
function must contain a return statement that returns a value. That is, in C++, if a function
is specified as returning a value, any return statement within it must have a value
associated with it. However, if execution reaches the end of a non-void function, then
a garbage value is returned. Although this condition is not a syntax error, it is still a
fundamental flaw and should be avoided.

As long as a function is not declared as void, vou may use it as an operand in an
expression. Therefore, each of the following expressions is valid:

x = power (y);
if (max(x,y) > 100) printf ("greater");
for (ch=getchar (); isdigit(ch);) ...

C++: The Complete Reference

As a general rule, a function cannot be the target of an assignment. A statement
such as

4

swap(x,y) = 100; /* incorrect statement */

is wrong. The C/C++ compiler will flag it as an error and will not compile a program
that contains it. (As is discussed in Part Two, C++ allows some interesting exceptions
to this general rule, enabling some types of functions to occur on the left side of an
assignment.)

When you write programs, your functions generally will be of three types. The
first type is simply computational. These functions are specifically designed to
perform operations on their arguments and return a value based on that operation.

A computational function is a "pure” function. Examples are the standard library
functions sqrt() and sin(), which compute the square root and sine of their arguments.

The second type of function manipulates information and returns a value that
simply indicates the success or failure of that manipulation. An example is the library
function fclose(), which is used to close a file. If the close operation is successful,
the function returns 0; if the operation is unsuccessful, it returns EOF.

The last type of function has no explicit return value. In essence, the function is
strictly procedural and produces no value. An example is exit(), which terminates a
program. All functions that do not return values should be declared as returning type
void. By declaring a function as void, you keep it from being used in an expression,
thus preventing accidental misuse.

Sometimes, functions that really don't produce an interesting result return somethirig
anyway. For example, printf(} returns the number of characters written. Yet it would
be unusual to find a program that actually checked this. In other words, although all
functions, except those of type void, return values, you don't have to use the return
value for anything. A common question concerning function return values is, "Don't |
have to assign this value to some variable since a value is being returned?” The answer
1s no. If there is no assignment specified, the return value is simply discarded. Consider
the following program, which uses the function mul():

#include <stdio.h>
int mul (int a, int b);
int main(void)

{

int x, v, z;

Chapter 6: Functions 151

z = mul(x, v); /* 1 x/
printf ("%d", mul(x,y)); /* 2 */
mul (x, Vv); /* 3 */

return 0;

int mul{int a, int b)

{

return a*b;

In line 1, the return value of mul() is assigned to z. In line 2, the return value is not

actually assigned, but it is used by the printf() function. Finally, in line 3, the return
value is lost because it is neither assigned to another variable nor used as part of an
expression.

Returning Pointers

Although functions that return pointers are handled just like any other type of
function, a few important concepts need to be discussed.

Pointers to variables are neither integers nor unsigned integers. They are the memory
addresses of a certain type of data. The reason for this distinction is because pointer
arithmetic is relative to the base type. For example, if an integer pointer is incremented,
it will contain a value that is 4 greater than its previous value (assuming 4-byte integers).
In general, each time a pointer is incremented (or decremented), it points to the next (or
previous) item of its type. Since the length of different data types may differ, the compiler
must know what type of data the pointer is pointing to. For this reason, a function that
returns a pointer must declare explicitly what type of pointer it is returning. For example,
you should not use a return type of int * to return a char * pointer!

To return a pointer, a function must be declared as having a pointer return type.

For example, this function returns a pointer to the first occurrence of the character ¢
in string s:

/* Return pointer of first occurrence of ¢ in s. */
char *match{char ¢, char *s)
{

while(c!=%s && *S) s++;

return{(s) ;

152 C++:The Complete Reference

If no match is found, a pointer to the null terminator is returned. Here is a short
program that uses match():

#include <stdio.h>
char *match(char ¢, char *s); /* prototype */

int main(void)
{
char s[80], *p, ch;

gets(s);
ch = getchar () ;
p = match(ch, s);

if (*p) /* there is a match */
printf("%$s ", p);
else

printf ("No match found.");

return 0;

This program reads a string and then a character. If the character is in the string, the
program prints the string from the point of match. Otherwise, it prints No match found.

Functions of Type void

One of void's uses is to explicitly declare functions that do not return values. This
prevents their use in any expression and helps avert accidental misuse. For example,
the function print_vertical() prints its string argument vertically down the side of the
screen. Since it returns no value, it is declared as void.

void print_vertical (char *str)
{
while (*str)
printf ("%$c\n", *str++);

Here is an example that uses print_vertical().

#include <stdio.h>

Chapter 6: Functions

void print_vertical (char *str); /* prototype */

int main{int argc, char *argv[]}
{

if (arge > 1) print_vertical(argv([l]):

return O;

}

void print_vertical (char *str)
{
while(*str)

printf("%c\n", *str++);

One last point: Early versions of C did not define the void keyword. Thus, in
early C programs, functions that did not return values simply defaulted to type int.
Therefore, don't be surprised to see many examples of this in older code.

What Does main() Return?

The main() function returns an integer to the calling process, which is generally the
operating system. Returning a value from main() is the equivalent of calling exit()
with the same value. If main() does not explicitly return a value, the value passed
to the calling process is technically undefined. In practice, most C/C++ compilers
automatically return 0, but do not rely on this if portability is a concern.

Recursion

In C/C++, a function can call itself. A function is said to be recursive if a statement in
the body of the function calls itself. Recursion is the process of defining something
in terms of itself, and is sometimes called circular definition.

A simple example of a recursive function is factr(), which computes the factorial
of an integer. The factorial of a number n is the product of all the whole numbers
between 1 and n. For example, 3 factorial is 1 x 2 x 3, or 6. Both factr() and its iterative
equivalent are shown here:

/* recursive */
int factr{int n) {
int answer;

if(n==1) return(l);:

153

154

C++: The Complete Reference

answer = factr(n-1)*n; /* recursive call */
return{(answer) ;

/* non-recursive */
int fact(int n) {
int t, answer;

answer = 1;

for(t=1; t<=n; t++)

answer=answer * (t) ;

return (answer) ;

The nonrecursive version of fact() should be clear. It uses a loop that runs from 1 to
n and progressively multiplies each number by the moving product.

The operation of the recursive factr() is a little more complex. When factr() is
called with an argument of 1, the function returns 1. Otherwise, it returns the product
of factr(n-1)*n. To evaluate this expression, factr() is called with n-1. This happens
until n equals 1 and the calls to the function begin returning,

Computing the factorial of 2, the first call to factr() causes a second, recursive call
with the argument of 1. This call returns 1, which is then multiplied by 2 (the original
n value). The answer is then 2. Try working through the computation of 3 factorial on
your own. (You might want to insert printf() statements into factr() to see the level of
each call and what the intermediate answers are.)

When a function calls itself, a new set of local variables and parameters are allocated
storage on the stack, and the function code is executed from the top with these new
variables. A recursive call does not make a new copy of the function. Only the values
being operated upon are new. As each recursive call returns, the old local variables
and parameters are removed from the stack and execution resumes at the point of the
function call inside the function. Recursive functions could be said to “telescope” out
and back.

Often, recursive routines do not significantly reduce code size or improve memory
utilization over their iterative counterparts. Also, the recursive versions of most routines
may execute a bit slower than their iterative equivalents because of the overhead of the
repeated function calls. In fact, many recursive calls to a function could cause a stack
overrun. Because storage for function parameters and local variables is on the stack
and each new call creates a new copy of these variables, the stack could be exhausted.
However, you probably will not have to worry about this unless a recursive function
runs wild.

Chapter 6: Functions

The main advantage to recursive functions is that you can use them to create clearer
and simpler versions of several algorithms. For example, the Quicksort algorithm is
difficult to implement in an iterative way. Also, some problems, especially ones related
to artificial intelligence, lend themselves to recursive solutions. Finally, some people
seem to think recursively more easily than iteratively.

When writing recursive functions, you must have a conditional statement, such
as an if, somewhere to force the function to return without the recursive call being
executed. If you don't, the function will never return once you call it. Omitting the
conditional statement is a common error when writing recursive functions. Use printf()
liberally during program development so that you can watch what is going on and
abort execution if you see a mistake.

Function Prototypes

In C++ all functions must be declared before they are used. This is normally accomplished
using a function prototype. Function prototypes were not part of the original C language.
They were, however, added when C was standardized. While prototypes are not
technically required by Standard C, their use is strongly encouraged. Prototypes have
always been required by C++. In this book, all examples include full function prototypes.
Prototypes enable both C and C++ to provide stronger type checking, somewhat like
that provided by languages such as Pascal. When you use prototypes, the compiler can
find and report any illegal type conversions between the type of arguments used to call
a function and the type definition of its parameters. The compiler will also catch differences
between the number of arguments used to call a function and the number of parameters
in the function.

The general form of a function prototype is

type func_name(type parm_namel, type parm_name2,. . .,
type parm_nameN);

The use of parameter names is optional. However, they enable the compiler to identify
any type mismatches by name when an error occurs, so it is a good idea to include them.
The following program illustrates the value of function prototypes. It produces an
error message because it contains an attempt to call sqr_it() with an integer argument
instead of the integer pointer required. (It is illegal to convert an integer into a pointer.)

/* This program uses a function prototype to
enforce strong type checking. */

void sqr_it(int *i); /* prototype x/

int main(void)

{

155

156

C++: The Complete Reference

int x;

x = 10;
sqr_it(x); /* type mismatch */

return 0;

void sgr_it{int *i)
{

A function’s definition can also serve as its prototype if the definition occurs prior
to the function’s first use in the program. For example, this is a valid program.

#include <stdio.h>

/* This definition will also serve
as a prototype within this program. */
void f(int a, int b)
{
printf("%d ", a % b);

int main(void)
{
£(10,3);

return 0;

In this example, since f() is defined prior to its use in main(), no separate prototype
is required. While it is possible for a function's definition to serve as its prototype in
small programs, it is seldom possible in large ones—especially when several files are
used. The programs in this book include a separate prototype for each function because
that is the way C/C++ code is normally written in practice.

The only function that does not require a prototype is main(), since it is the first
function called when your program begins.

Because of the need for compatibility with the original version of C, there is a
small but important difference between how C and C++ handle the prototyping of

Chapter 6: Functions 157

a function that has no parameters. In C++, an empty parameter list is simply indicated
in the prototype by the absence of any parameters. For example,

int £(); /* C++ prototype for a function with no parameters */

However, in C this prototype means something different. For historical reasons,
an empty parameter list simply says that no parameter information is given. As far as the
compiler is concerned, the function could have several parameters or no parameters. In
C, when a function has no parameters, its prototype uses void inside the parameter list.
For example, here is £()'s prototype as it would appear in a C program.

float f(void);

This tells the compiler that the function has no parameters, and any call to that function
that has parameters is an error. In C++, the use of void inside an empty parameter list
is still allowed, but is redundant.

Remember In C++, f() and f(void) are equivalent.

Function prototypes help you trap bugs before they occur. In addition, they help
verify that your program is working correctly by not allowing functions to be called
with mismatched arguments.

One last point: Since early versions of C did not support the full prototype syntax,
prototypes are technically optional in C. This is necessary to support pre-prototype
C code. If you are porting older C code to C++, you may need to add full function
prototypes before it will compile. Remember: Although prototypes are optional in C,
they are required by C++. This means that every function in a C++ program must be
fully prototyped.

Standard Library Function Prototypes

Any standard library function used by your program must be prototyped. To accomplish
this, you must include the appropriate header for each library function. All necessary
headers are provided by the C/C++ compiler. In C, the library headers are {usually)
files that use the .H extension. In C++, headers may be either separate files or built into
the compiler itself. In either case, a header contains two main elements: any definitions
used by the library functions and the prototypes for the library functions. For example,
stdio.h is included in almost all programs in this part of the book because it contains the
prototype for printf(). The headers for the standard library are described in Part Three.

158 C++: The Complete Reference

1 Declaring Variable-Length Parameter Lists

You can specify a function that has a variable number of parameters. The most common
example is printf(). To tell the compiler that an unknown number of arguments may
be passed to a function, you must end the declaration of its parameters using three
periods. For example, this prototype specifies that func() will have at least two integer
parameters and an unknown number (including 0) of parameters after that.

int func(int a, int b, ...);

This form of declaration is also used by a function's definition.
Any function that uses a variable number of parameters must have at least one
actual parameter. For example, this is incorrect:

int func(...); /* illegal */

___| Old-Style Versus Modern
Function Parameter Declarations

Early versions of C used a different parameter declaration method than does either
Standard C or Standard C++. This early approach is sometimes called the classic form.
This book uses a declaration approach called the modern form. Standard C supports
both forms, but strongly recommends the modern form. Standard C++ only supports
the modern parameter declaration method. However, you should know the old-style
form because many older C programs still use it.

The old-style function parameter declaration consists of two parts: a parameter
list, which goes inside the parentheses that follow the function name, and the actual
parameter declarations, which go between the closing parentheses and the function's
opening curly brace. The general form of the old-style parameter definition is

type func_name(parm1, parm2, . . .parmN)
type parmi;
type parm2;

type parmN;
{

function code

}

For example, this modern declaration:

float f(int a, int b, char ch)

.

will look like this in its old-style form:

float f(a, b, ch)

int a, b;
char ch;
{

VA
}

Chapter 6:

Functions

Notice that the old-style form allows the declaration of more than one parameter in

a list after the type name.

Remember l The old-style form of parameter declaration is designated as obsolete by the C language

and is not supported by C++.

159

